Validation: SEP Working Team & Scoreboard TDM

- Agenda: 1) TDM introduction [2 min]
- 2) SEP Working Team and Scoreboard Status [13 min]
- 3) SEP Working Team Community Campaign Events [60 min] 10 September 2017; 23 July 2017

Empirical(ish)

- Athanasios Papaioannou FORSPEF [12 min]
- Mark Dierckxsens SEPForecast [12 min]
- Monica Laurenza ESPERTA [12 min]
- Ian Richardson SEPSTER [12 min]
- Olga Malandraki REleASE [12 min]
- Mike Marsh UK Met Office operational probabilistic forecast
- Marlon Núñez UMASEP-10

Physics-based

Silvia Dalla – SPARX

General Discussion:

- What are the challenges?
- How to establish performance benchmarks for models in a systematic, controlled way and for much longer time periods.

Grey: Not attending ESWW but sent model event results

SEP Working Team Goals

- (1) Evaluate how well different models/techniques can predict historical SEP events throughout the heliosphere;
- (2) Establish community metrics; and
- (3) Provide a benchmark against which future models/model updates can be assessed against.

SEP Working Team Update From iLWS-CCMC 2017 workshop

Many SEP quantities to validate, e.g.:

- Onset time and threshold crossing time
- Event duration (above a threshold)
- dependent)
- Flare/CME-SEP prediction (i.e., when will a flare/CME erupt, and will it be associated with SEPs?).
- Fluence, peak intensity and peak timing (energy Energy spectrum, anisotropy, profile shape ESP

Observations (calibration is important)

GOES (dataset cross-calibrated with IMP/GME), STEREO, SOHO, ACE, PAMELA, Wind, IMP-8

Examples of different user requirements:

- Satellite launchers: Use GOES >10 MeV proton intensity for radiation-based go/no go decisions. Would like forecasts of SEP intensity several days in advance;
- Aviation community: Need reliable, few hours lead time, forecasts of 100s of MeV/n SEPs that penetrate to aircraft altitudes and to low geomagnetic latitudes. Forecasts of >10 MeV proton events/fluxes are not useful.

Overlapping user needs:

- a few **standard energy ranges** relevant to user groups (more than just GOES 10 MeV, 100 MeV protons)
- a few **standard thresholds** (to define SEP event, and duration time) relevant to user groups
- Include heavy ions
- Make sure a **few key metrics** amongst science metrics are targeting users

CCMC community scoreboards

https://ccmc.gsfc.nasa.gov/challenges/

Leads: Trinity College Dublin (S. Murray), ROB (J. Andries)

Leads: **BIRA-IASB** (M. Dierckxsens, N. Crosby), **GSFC** (I. Richardson),

UK Met Office (M. Marsh)

- Scoreboards collect forecast before event is observed
- Allow a consistent **real-time** comparison of various operational and research forecasts. Complementary to non-real time model assessments.

Leads: **GSFC** (N. Savani), **PredSci** (P. Riley), **CCMC** (L. Mays)

SEP Scoreboard

https://ccmc.gsfc.nasa.gov/challenges/sep.php

- Planning for the SEP Scoreboard started in 2016 (led by BIRA-IASB, GSFC, UK Met Office)
- Builds upon the flare scoreboard and CME arrival time scoreboard
- Automated system; model developers can routinely upload their predictions to an anonymous ftp. Forecast data will be parsed and stored in a database which accessible to anyone via an API
- SEP forecasts can be roughly divided into three categories:

- The SEP scoreboard will focus on real-time forecasts (first and second categories) and will collect: proton flux profile, threshold crossing probability, onset time, and duration.
- The SEP scoreboard team will also coordinate with the SEP Working Team for historical comparisons, particularly for those physics-based models in the third category that are not ready or relevant for real-time modeling.
- 2018: A version of the SEP Scoreboard is being developed for Johnson Space Center's Space Radiation Analysis Group starting with the initial set of 6 models.

Continuous Probabilistic:

Continuous Profile:

PREDICCS (UNH)

SWPC
UK Met Office

MAG4 (Falconer)

FORSPEF (NOA)

SPRINTS

CSWEPA MAS+EPREM

(PSI and UNH)

EPREM+ENLIL (UNH + Odstricil)

iPATH (Li)

SEPMOD (Luhmann)

SPARX (Dalla, Marsh)

SWMF FLAMPA (UMich)

Zhang Model (FIT)

Flare and CME:

COMESEP SEPForecast

FORSPEF (NOA)

SOLPENCO (Arans)

Flare and proton flux:

UMASEP (Núñez)

CME:

Richardson SEP formula

St. Cyr (Mauna Loa CME)

Electron flux:

REIeASE

Flare, Radio, H-alpha:

SWPC PPM

Flare, Radio:

Laurenza Model

Radio:

AER SEP Model (Winter)

Flare:

AFRL PPS

COMESEP SEPForecast (BIRA)

FORSPEF (NOA)

SPARX (Dalla, Marsh)

SEP Scoreboard Planning Display ideas

Probability heat map

settings

models

issue time: 2016-11-03 00:00 ▼

at a single time

https://ccmc.gsfc.nasa.gov/challenges/sep.php

Download Data 👃

Predicted proton flux time-series

CCMC SEP Scoreboard Collaboration with NASA Johnson Space Center: Astronaut Safety

- This year CCMC has started a 3 year project with SRAG to transition a few research Solar Energetic Particle models to operations including MAG4, UMASEP, SEPSTER, SEPMOD, STAT
- These models were chosen by SRAG based on their operational requirements, other models may be considered in later years.
- They need to know the **likelihood of an energetic particle event** over the next few days. Or, given a flare or coronal mass ejection event, will there be solar energetic particles? How intense will they be? How long will they last? What will be the impact on crew health?
- Models transitioned, and SEP Scoreboard displays built by CCMC will be used operationally by SRAG for human missions beyond LEO starting in 2022.

Draft XML Schema for Scoreboard

- XML Schema draft presented 2016-2017 to handle as wide a variety of forecasts as possible
- Currently being updated and finalized by February 2019
- May switch from XML to JSON
- Header element providing details on the model and validity of the forecast
- Issued forecast element(s) providing:
 - description, reference, species, location, confidence
 - event length & threshold
 - strength (storm level, peak flux, fluence)
 - probability
 - energy range
 - flux profile (time series)

XML Schema	Type	Comments
sepforecast		
header		
sender	string	optional
email	string	optional
model	string	
forecasttype	string	restrictions ¹
issuetime	datetime	
predictionwindow		optional
starttime	datetime	
endtime	datetime	
inputdata	string	optional, >1 possible
issued forecast		at least 1
description	string	
source id	string	optional
source url	string	optional, >1 possible
species	string	restrictions ²
location	string	restrictions ³
confidence	decimal	[0.0,1.0]
event length	acamar	optional
onset time	datetime	optional
end time	datetime	optional
event threshold	dateume	optional
threshold	decimal	Optional
units		
time	string datetime	
strength	uatetime	
storm level	integer	optional, [0,5]
peak flux	Integer	optional
flux	decimal	>0.0
units		70.0
time	string datetime	
fluence	decimal	antional >0.0
		optional, >0.0
fluence units	decimal	>0.0
	string	ontional
probability	de simol	optional
value	decimal	[0.0,1.0]
uncertainty	decimal	optional
value_lower	decimal	optional, [0.0,1.0]
value_upper	decimal	optional, [0.0,1.0]
energy_range	destand	defeath 0.0
energy_min	decimal	default 0.0
energy_max	decimal	default -1.0 = infinity
sep_profile		optional
units	string	
flux_point		>1 possible
time	datetime	
flux	decimal	>0.0

SHINE 2018 Workshop sessions related to Working Team: SEP Models in the Community

(SHINE: July 30—August 3, 2018)

Sessions:

Coupled heliospheric and solar energetic particle models

Organizers: Christina Lee (UC Berkeley), Janet Luhmann (UC Berkeley), M. Leila Mays (NASA/GSFC)

Predicting solar energetic particles: community campaign

Organizers: M. Leila Mays (NASA GSFC), Hazel Bain (NOAA SWPC), Ian Richardson (UMD/NASA GSFC)

Is Understanding Magnetic Field Connectivity Crucial for Understanding Solar Energetic Particle Events?

Organizers: Hazel Bain (NOAA SWPC), Ian Richardson (University of Maryland/GSFC)

Continuous Probabilistic:

Continuous Profile:

PREDICCS (UNH)

SWPC
UK Met Office

MAG4 (Falconer)

FORSPEF (NOA)

SPRINTS

CSWEPA MAS+EPREM

(PSI and UNH)

EPREM+ENLIL (UNH + Odstricil)

iPATH (Li)

SEPMOD (Luhmann)

SPARX (Dalla, Marsh)

SWMF FLAMPA (UMich)

Zhang Model (FIT)

Flare and CME:

COMESEP SEPForecast

FORSPEF (NOA)

SOLPENCO (Arans)

Flare and proton flux:

UMASEP (Núñez)

CME:

Richardson SEP formula

St. Cyr (Mauna Loa CME)

Electron flux:

REIeASE

Flare, Radio, H-alpha:

SWPC PPM

Flare, Radio:

Laurenza Model

Radio:

AER SEP Model (Winter)

Flare:

AFRL PPS

COMESEP SEPForecast (BIRA)

FORSPEF (NOA)

SPARX (Dalla, Marsh)

SHINE 2018:

Predicting solar energetic particles: community campaign

All contributing slides available at: https://drive.google.com/open?id=1ZMdcSEA0rVJFLX8041vSQjjuq8tqXrP

Physics-based

- Dmitry Borovikov SWMF
- Silvia Dalla SPARX
- Junxiung Hu iPATH
- Janet Luhmann SEPMOD
- Ming Zhang Zhang model

Empirical(ish)

- Stephen White & Steve Kahler AFRL PPS
- Arik Posner REleASE
- Hazel Bain PROTONS & SWPC operational forecast
- Marlon Núñez UMASEP-10
- Ian Richardson Richardson formula
- Alex Engell & David Falconer MAG4 and SPRINTS
- Athanasios Papaioannou FORSPEF
- Mark Dierckxsens SEPForecast
- Mike Marsh UK Met Office operational probabilistic forecast
- Monica Laurenza ESPERTA

Probabilistic S1 Forecasts - September 2017 (Earth*)

Probabilistic S1 Forecasts - July 2017 (Earth)

Lee et al. GRL, 2018 (accepted)

